

2410 Camino Ramon #228

San Ramon, CA 94583

+1 888-386-4114

info@evolphin.com

www.evolphin.com

Why Database Matters in Digital Asset Management

Rahul Bhargava

Chief Technical Officer

evolphin Software, Inc.

An evolphin
®
 Software Technology White Paper

Page 2 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

Contents

Executive Summary ... 2

Brief History of Database Technology 3

CPU & Hardware Trends .. 3

Why not to use a Traditional SQL RDBMS with

DAM? ... 4

Why evolphin Built a Database from Scratch! . 5

The Evidence .. 6

Conclusions ... 7

Executive Summary

According to an IDC 2011 paper, "Extracting Value from

Chaos," the digital universe is exploding. In 2011 the world

created a staggering 1.8 zettabytes. By 2020 the world will

generate 50 times that amount of information. Creative

organizations and their IT staff are scrambling to manage

this avalanche of digital assets.

The need for a scalable Digital Asset Management system

(DAM) is now more important than ever. The challenge

however is that traditional database technologies will not

support this level of scalability creating a problem for

current DAM solutions. Existing database solutions were

designed to manage structured data and not the types of

digital files that are now proliferating the creative

organization.

DAM software, the primary tool for managing large

amounts of data and an equally large amount of users, is an

unfortunate victim of yesterday’s database technology.

Most traditional databases were designed when hardware

was much more expensive and did not have nearly the

processing power that is available today.

A new breed of database has emerged that can scale to

meet the needs of creative organizations and still provide

the necessary assurances that the data will be consistent.

evolphin’s RevDB database has been rigorously evaluated,

tested and proven to scale to massive proportions as

demonstrated in recent benchmarking tests performed by

Azul, an evolphin partner and leader in no-pause ultra-low

latency Java Virtual Machine (JVM) technology.

Page 3 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

Brief History of Database Technology

Database management systems (DBMSs) have

been around for many years. In the 1970s

Relational Database Management Systems

(RDBMS) came into vogue for storing structured

data such as employee records or sales records,

each of them well suited for a RDBMS. SQL

(Structured Query Language), a mechanism for

searching and finding such records in a RDBMS

such as Oracle, DB2, or MySQL has also become an

industry standard.

The ubiquity of SQL and RDBMS make them the

database solution of choice for software architects

building enterprise applications. It is no surprise

therefore that most Digital Asset Management

(DAM) systems in the marketplace have been built

on top of a RDBMS. Unfortunately, when these

systems were first designed, the software

architects did not consider the implications of

storing unstructured data in a database designed

specifically for structured data.

In the past decade NoSQL database systems have

been gaining traction. These databases have the

following characteristics:

 They do not require a fixed table schema

 They avoid costly join operations

common in RDBMSs by storing de-

normalized structured data

 They are often targeted at applications

without the need for strong consistency1

requirements.

This presents a dilemma to software architects

who require the benefits of an SQL free approach

but also want strong consistency guarantees on

the stored data.

Supported by the latest research in very large

database systems (VLDB), a new breed of

1 Consistency as defined in the theory of database systems.

database solutions are emerging to address the

shortcomings of NoSQL databases while providing the

atomicity, consistency, integrity and durability (ACID)

guarantees needed by applications such as a DAM.

evolphin Software’s RevDB is a new breed of database.

CPU & Hardware Trends

In the graph above it is evident that the number of

transistors that can be fitted onto a single chip has grown

from around 10 million to over 2 billion in the last decade.

This means that a larger number of cores can exist within a

single processor. IT departments now have the ability to

consolidate multiple servers into a single massively

scalable system.

Despite the advances in both processing power and

memory, one bottleneck has remained; hard disk. While

SSD systems providing fast performance are gaining

traction in the consumer space, storing terabytes of

enterprise content is still the realm of magnetic disks.

These disks remain the most cost effective way of storing

large digital assets. Therefore, disk I/O will continue to be

a bottleneck for the foreseeable future.

Clearly there are major implications for applications such

as Digital Asset Management that require high compute

power in addition to fast disk access.

Page 4 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

Why not to use a Traditional SQL

RDBMS with DAM?

Not optimized for today’s hardware

In 2000 a Sun Microsystems SPARCstation 2000

with 5GB of memory was considered prohibitively

expensive. Today, at a similar price point, a system

with 512GB of RAM is feasible. Beyond memory,

the number of processors (with multiple cores)

that can be embedded onto a single motherboard

has increased significantly. A system with 100+

cores is relatively affordable today whereas just 5

years back such a system would have been out of

reach for most businesses.

SQL RDBMS were designed in an era when

memory and computing power were both costly

and limited. Most traditional RDBMS still use

expensive disk based paging schemes to bring

data from disk to memory. The number of open

connections to the database driver limits the

concurrency. It is common to have a database

connection pool that is a fraction of the number of

concurrent users accessing the system, making the

database the major bottleneck from a

performance & scalability perspective.

Applications end up creating their own caching

layer for read-only data in order to circumvent the

paging schemes and concurrency limitations

presented by traditional RDBMS architectures.

Not optimized for blobs

Large unstructured data like digital assets cannot

be managed efficiently using a RDBMS because the

file data for digital assets is not a structured

record. For instance a video asset is an example of

unstructured data because it has many

uncorrelated frames. An RDBMS would store this

unstructured data as a blob (binary large object).

However, searching and retrieving blobs can be

slow, inefficient and cumbersome when using an

interface like SQL that is optimized for serving

tabular data.

Cost of SQL

SQL plays a major role in an RDBMS. All database

operations are typically accessed through the SQL

interface. The database must interpret each SQL query and

then perform expensive join operations in order to return

the search results. The application then consumes the

records and creates an O-R (relation to object) mapping in

the code to create usable objects for manipulating and

streaming the results back to the client. RDBMS try to

avoid costly SQL calls by caching the queries but with

varying queries this model is difficult to scale.

Locking

A RDBMS has a complex locking mechanism for

concurrency control to ensure data consistency and

integrity. For instance, if a metadata row needs to be

modified, the RDBMS may obtain a row level write lock

that can block readers from accessing the database row

causing “lock contention”. In a DAM context this could

mean locking thousands of rows when for instance

metadata records need to be updated for an entire creative

project. This in turn, reduces the overall throughput and

performance of the DAM system due to significant lock

contention.

Inconsistencies

Traditional DAMs often store metadata in the RDBMS and

the actual file data on a network share. Some DAMs even

store the actual metadata in a side file, with the database

used for just indexing the actual metadata. In effect

traditional DAMs behave like a glorified network file

system.

This presents a challenge in keeping the file data, metadata

and metadata index in sync. For example, if a user changes

the metadata and file data of multiple files and then tries to

ingest them using the above scheme, there is no way for

the DAM to guarantee an atomic update to both the file

system and the RDBMS tables.

The reason is that the RDBMS provides transactional

semantics for its operations unlike the file system. There is

no overarching “transaction manager” that coordinates the

write operations to both systems. This can lead to

scenarios where files may be modified or deleted but

metadata tables are not, causing the two systems to

become out of sync. The system administrator then has to

Page 5 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

manually rebuild the database tables to make

them consistent with the file system.

The traditional DAM software architect is faced

with two very clear problems:

1. If they use the RDBMS blob mechanism to

store the file data then performance will

be adversely affected.

2. Conversely, if they only store metadata in

the RDBMS (and not the file data), they

will not be able to guarantee data

integrity and consistency.

Deployment headaches
Traditional DAM systems are often complex to

deploy and manage; various components

including a RDBMS that need to be setup and

managed by a database administrator (DBA),

makes operational maintenance and support more

difficult than it should be. It is one thing to tune

database queries to get the best performance out

of the RDBMS used by the DAM, it is quite another

to conduct fault diagnoses when multiple

components and vendors are involved.

Why evolphin Built a Database from

Scratch!

The evolphin engineering team has an extensive

background in building scalable databases and

distributed systems; experience gained with

Silicon Valley companies that recognized the

challenges and pitfalls of using RDBMS in a DAM

system.

Several large companies like Google and Facebook

have recognized the same issues and have

invested heavily in building their own custom

database and file systems to scale to large volumes

of unstructured data. Those systems are

proprietary and are not available to the public at

large. In addition, the use case for these

companies does not require strong consistency

guarantees and transactional behavior from the

database and the file system. DAM systems, on the other

hand, store both structured and unstructured data that

needs to be modifiable with strong consistency guarantees.

The evolphin engineers have created a next generation

database technology that has already addressed the

challenges and concerns outlined in this paper. With 8

patents pending, the RevDB database brings the

capabilities outlined below to the DAM industry.

Designed for today’s hardware

The first assumption is that 64-bit server systems will

scale to large amounts of RAM (64GB+) as well as

processor cores (32 cores or more) at a reasonable cost. At

the time of writing this article, a hardware configuration

with 64 GB RAM, 8x8 hyper-threaded Intel Xeon

processors (64 virtual cores) would be a fraction of the

cost compared to 10 years ago. This trend is likely to

continue with the accelerated growth in the number of

cores and amount of RAM on server machines. The RevDB

database system takes advantage of hardware with

massive parallel processing, using concurrent threads, as

well as large in-memory cache of indexes that takes

advantage of a copious amount of RAM in contrast to

RDBMS indexes that reside on disk and therefore run into

costly disk paging calls. This ensures a DAM application

written on top of RevDB gets the maximum benefit from

today’s hardware.

Optimized for blobs

The Zoom database works in tandem with its built-in

overlay transaction file store. Large digital assets can be

stored as a blob (binary large object) in the Zoom file store

without performance degradation and without the loss of

any strong consistency guarantees. Zoom’s deduplication

technology is coupled with the RevDB blob storage

mechanism to make it even more efficient to store

revisions of work-in-progress digital assets.

Zoom ships with its own middleware/application server

that further optimizes the network protocol for

transferring large file data. This proprietary network

transfer protocol tunnels over HTTP, ensuring that HTTP

aware network devices such as firewalls do not have any

issues.

Page 6 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

No SQL

Zoom’s RevDB exposes an object oriented

interface to the database. There is no SQL to object

mapping needed, as the database schema is

directly compiled into objects. Therefore the Zoom

RevDB completely avoids all the issues

surrounding SQL based systems like traditional

RDBMS.

Multiversion Concurrency Control

Zoom RevDB implements a state-of-the-art

multiversion concurrency control scheme for data

consistency in the presence of multiple readers

and writers. This lock-free approach eliminates

lock contention that is common in RDBMS. In

addition the in-memory index model ensures

RevDB does not need to hold page or range locks.

Performance improvements are dramatic with

this approach. Searching through millions of

metadata records can be accomplished in

milliseconds.

Atomicity
Zoom RevDB implements a transactional interface

across the file system and the database thereby

eliminating the biggest weakness of the traditional

DAM approach of keeping the file system separate

from the metadata index that is stored in an

RDBMS. Now, when the end-user updates

metadata and file data across multiple files, partial

failures due to issues such as a network outage on

the file system, do not cause the DAM state to

become inconsistent because of partial or

incomplete updates.

The Evidence

evolphin worked with Azul Systems, a provider of

high performance Java Virtual Machine (JVM)

technology, to benchmark the Zoom system in a

real-world scenario with vast numbers of files and

users.

The Setup at Azul

The Azul team setup an independent lab with a massively

scalable server machine that included:

 64 cores of compute power

 512 GB of RAM

 10 Gbps Ethernet LAN

 10K RPM SAS disks

 Linux (CentOS 6.4 64-bit) operating system

 10 million digital assets ingested into Zoom server

The evolphin Zoom server was configured to use Azul

enhanced JVM, Zing, instead of the default Oracle JVM. Azul

JVM implements a highly-scalable, no-pause GC (Garbage

Collector) that can scale to TB+ RAM.

Benchmark

Zoom clients were setup on a Linux machine with similar

specs as the server machine. An automated script was

deployed to run a massive number of concurrent clients to

simulate real-world load. Each Zoom client was setup to

programmatically run several Zoom commands, such as

browse and search, in parallel using the Zoom command

line API. The parameters for these commands ensured the

worst case scenario of searching through every single

record in Zoom looking for matching assets. The Zoom

server was configured to return 10,000 search results to

simulate a large response that would place significant load

on the server and to stream over the 10 Gbps network.

Results

Zoom server was injected with an increasing client load

starting at 100 concurrent requests up to 3,000 concurrent

requests within a second or less. At the peak that would

translate to 180,000 requests every minute. In the real

world, for every concurrent user there would typically be

10 users. This would translate to a single Zoom server

supporting over 100,000 active users.

In the end, the Zoom server could not be loaded any

further because resources outside the control of the Zoom

server became saturated. These included: 1) Ethernet

network, 2) Client machine acting as the load driver, and

3) Linux OS on the client side. Zoom server did not crash

nor slow down, in fact, it was able to scale to 384GB of

RAM using the Azul Zing JVM before the resources became

saturated with the load.

Page 7 of 7

Copyright © 2013 evolphin Software, Inc. All rights reserved. All brand names, product names and trademarks belong to their respective owners.

Conclusions

Traditional RDBMS are not well suited to

managing large volumes of digital assets. A fresh

approach is needed and is now available in the

form of VLDB systems. The evolphin RevDB

database is one of the first such databases and

when used for Digital Asset Management can

provide on a single server the scalability,

performance and reliability required by today’s

creative organizations.

